

W hy Hydrogen?

Dr. David L. Block
Director Emeritus
Florida Solar Energy Center

(A Research Institute of University of Central Florida)

Challenge

Research and Development to obtain fuel to replace fossil-based fuels

Hydrogen - the perfect fuel

- Abundant, renewable, indigenous, freely available
- All energy needs combustion to electricity generation
- Least polluting emissions

Fuel for space travel

Fuel for Earth Travel

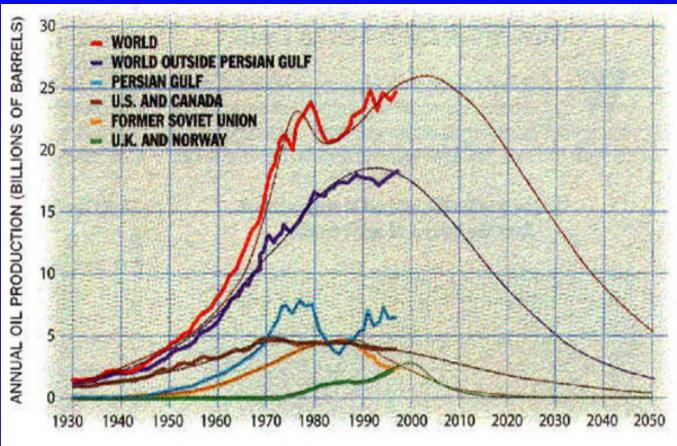
AUTOnomy by General Motors

Fuel to Generate Electricity

Oilssues

REGULAR

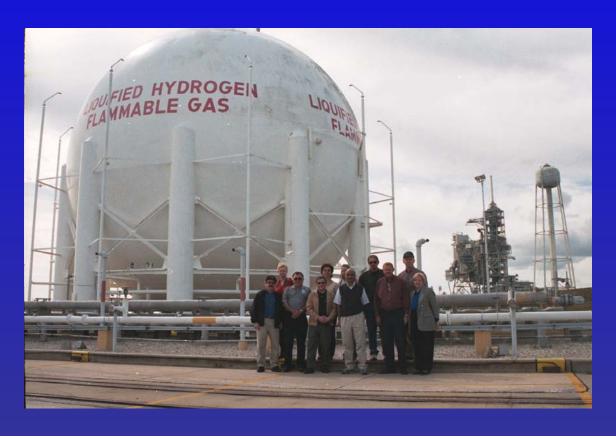
2000



OilIssues

- U. S. Imports
- Middle East Supply
- World Oil Production Peak
- Security

The End of Cheap Oil


Source: Campbell, Colin J. and Jean H. Laherrere, "The End of Cheap Oil." Scientific American, March 1998.

Our Conclusion

Hydrogen research and development is vitally important to the nation's and to

the world's future.

U.S. DOE Hydrogen Funding

FY 2001 - \$72.6 million

FY 2002 - \$74.0 million

FY 2003 - \$97.4 million

36% Increase

President's Proposal

- FreedomFUEL
- FreedomCAR

- \$1.2 Billion
- \$0.5 Billion

Hydrogen Technology Development Pathway

Production
toughest problem
Storage
almost as difficult
Utilization
more easily solved
Transition
can start today

Hydrogen Production Feedstock

- Fossil fuels
- Water
- Biomass

Hydrogen Costs - \$/MBtu

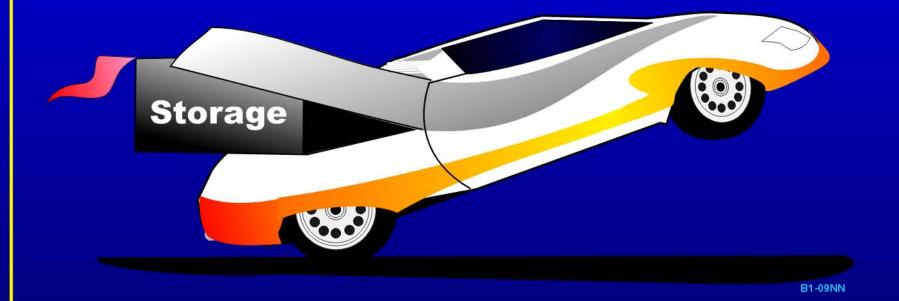
Steam reformation of natural gas = $3 \times (natural gas cost)$

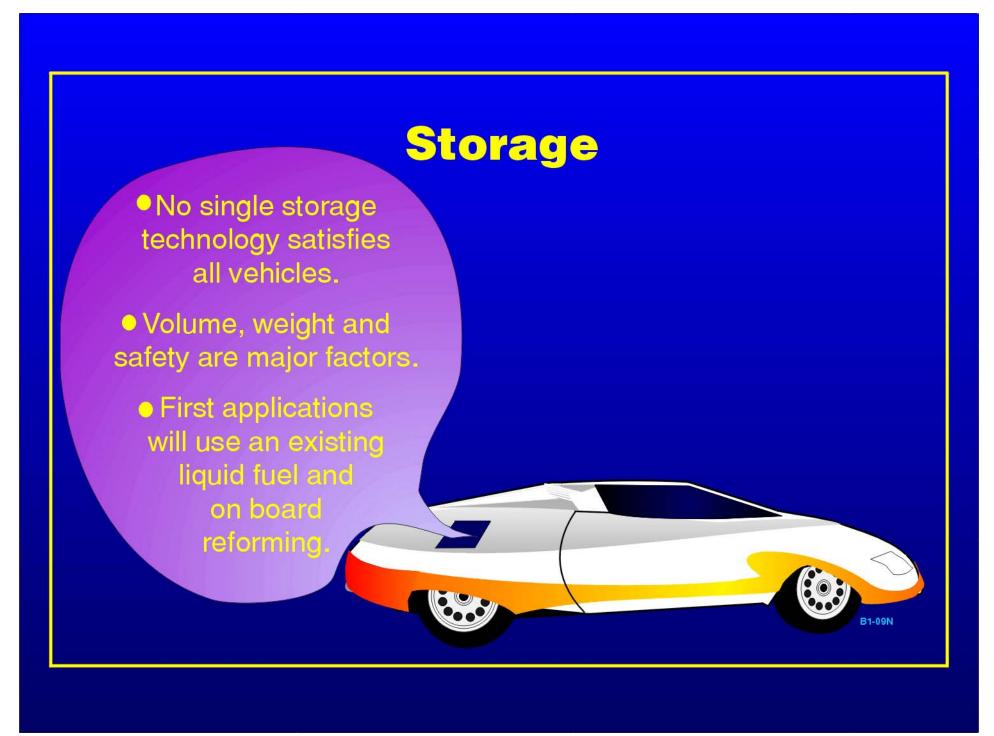
Electrolysis using electricity at \$.05/Kwh = \$28/MBtu

Hydrogen and Carbon

- Natural gas limited supplies
- Coal FutureGen
- Sequestering critical issue

Renewable Based Process

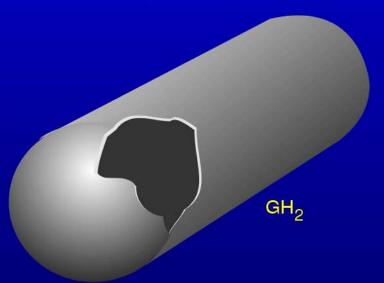

- PV electrolysis
- Photoelectrochemical
- Photobiological
- Thermochemical (high temperature from solar)



Hydrogen Production Process Goals

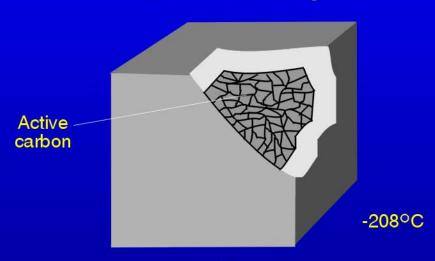
- Must be driven by renewable energy and use renewable feedstock
- Must become cost-competitive in meeting niche market needs
- Must be capable of scale-up for large markets

Storage is a Function of Utilization



Hydrogen Storage

State of the Art


-253°C

Liquid storage

Gas pressure storage

New concepts

Absorber storage

Metal hydride storage

20°C to

280°C

DOE Storage Goals

- 6% by weight
- Cost \$5/Kwh

Fuel Storage Numbers

(for 2000 lb vehicle, 250 mile range, 40 mpg)

Fuel Type	Weight (lbs)	Volume (ft ³)
Gasoline	50	1
Liquid H ₂ – ICE	90	6
– FC	40	3
Compressed H ₂ – ICE	1500	27
– FC	700	12
Lead acid battery	4700	31
Advanced battery	650	10

Utilization

Dr. Bain's Hydrogen Car--Refueling

Costs

Internal Combustion Engine \$50/Kw Fuel Cell \$5,000/Kw

DOE Fuel CellGoals

- Efficiency
 - Direct 60%
 - Reformer 75%
- Cost
 - \$45/Kw by 2010
 - \$30/Kw by 2015

Ballard Power Systems

Reduce or eliminate platinum catalysts

Ballard Fuel Cell

Ownership

Daimler Chrysler	24%
------------------	------------

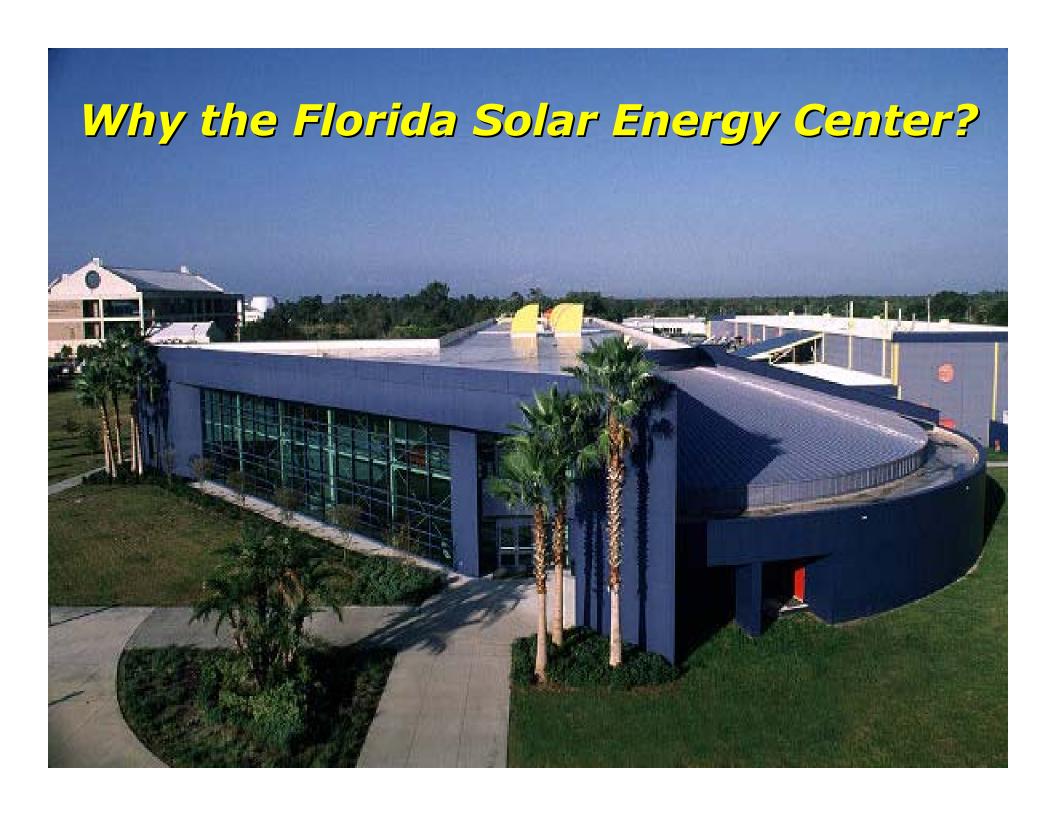
 Ford 20

Public56%

Elem ents of Success

- **✓** Technologies
 - Solve storage problem
 - Fuel cell vs. ICE
 - Feedstock

Florida must be a key player in this new industry.


Florida's Strengths

- KSC World's leading expertise
- KSC Natural test-bed
- FSEC Strong technical research staff and resources
- NASA \$8.125 million R&D
- Partnerships Six Florida Universities and NASA

Florida's Opportunities

- Attract and develop new companies in this infant industry
- Build new industry
- Create new jobs

FSEC Hydrogen Research

- Since 1983, 31 contracts totaling \$10.2 million
- Current NASA hydrogen program funded at \$8.125 million
- FSEC has 10 hydrogen-related patents.

NASA/Florida Universities Hydrogen Program

Grant Task	Universities
Densified Propellant Technology	FSEC, FSU
Safety & Monitoring Systems	FSEC, FSU, UCF, UF, USF, UWF
H ₂ Storage for Spaceport & Vehicle Applications	FSEC,UCF, UF
Local H ₂ Production, Transport & Recovery	FIU, FSEC, UCF, UF, USF
New Propellants & Cryofuels	FSU, UF
In-space Cryogenic Fluid Management Technology	UF, USF
Education & Outreach	FSEC, UF

"Dream" Num bers

- Oil produced in U.S. \$ 90 billion
- Imported oil \$110 billion

Hydrogen fuel potential = \$200 billion/year

"Dream ..."

- Automobiles produced in U.S.
- New car sales

- = 17 million/year
- = \$375 billion/year
- Cost of internal combustion engines = \$ 25 billion/year

Fuel cell potential= \$50 billion/year

Conclusion

No technology holds greater promise for the future than the technology that can replace the need for fossil fuels –

HYDROGEN.